# CAMEO Refresher Exercise Set: November, 2010 Train Derailment Exercise

# Scenario:

At 6:30 am on December 1, 2010, a freight train accident resulted in a derailment of 11 railcars. The derailment occurred at \_\_\_\_\_\_ and \_\_\_\_\_ in your local community. Responders have secured the immediate area, and have obtained some limited information on the materials contained in the 11 railcars. While the materials involved present a number of hazards, responders are particularly concerned about the materials in the following railcars:

UN # 1789 UN # 2428 Acetone CAS # 108-91-8

At present, none of the railcars appear to be leaking any material. However, the four railcars listed above have sustained noticeable damage.

Current weather conditions are as follows:

| Wind: from the southwest; 16 mph with gu | ists to 22 mph (obtained from local airport) |
|------------------------------------------|----------------------------------------------|
| Ground Roughness: open country           | Cloud Cover: Clear Skies                     |
| Air Temperature: 35° F                   | Stability Class: D                           |
| No Inversion Height                      | Relative Humidity: 22%                       |

The forecast is calling for the following weather conditions at noon:

| Wind: from the West; 12 mph with gusta | s to 22 mph (obtained from local airport) |
|----------------------------------------|-------------------------------------------|
| Ground Roughness: open country         | Cloud Cover: Clear Skies                  |
| Air Temperature: 55° F                 | Stability Class: D                        |
| No Inversion Height                    | Relative Humidity: 33%                    |

You are directed to operate CAMEO and supply information to Incident Command for the duration of this event.

# **CAMEO** Chemicals

- 1. Use CAMEO Chemicals to gather information for the various chemicals. (CAMEO Companion pages 31-34)
  - a. Are these materials liquid, solid, or gas?
  - b. Is it likely that these materials are carried in Liquid Tankers or Pressurized Tankers?
  - c. What are the primary hazards associated with these materials?

- 2. Use the CAMEO Chemicals "Predict Reactivity" module to evaluate the potential reactive hazards for this incident. (CAMEO Companion pages 34-35)
- 3. Determine the Initial Isolation Zone and Evacuation distances appropriate for this scenario. (CAMEO Companion pages 31-34)

# MARPLOT

- 1. Launch MARPLOT
- 2. Select a location in your area to use as the incident site
- 3. Navigate to the incident location (CAMEO Companion pages 57-62)
- 4. Mark the incident location using the "Extras / Marked Point / Mark Click Point" menu (CAMEO Companion pages 65-66)
- 5. Use the "Circle" drawing tool to display the Immediate Isolation Zone on the map (CAMEO Companion pages 74, 81)
- 6. Use the "Polygon" drawing tool to display the largest ERG-suggestion downwind evacuation area
- 7. Copy and paste a screenshot of the mapped area from MARPLOT to WORD. (CAMEO Companion pages 85)



# **ALOHA**

- 1. Determine which, if any, of these materials can be modeled using ALOHA.
  - *a*. For the first ALOHA scenario, use Acetone
  - b. Model for the Toxic, Vapor Cloud Explosion, and BLEVE zones
  - *c*. Repeat for the other substances
- 2. Use the following weather data:

| Wind: 16 miles/hour from SW at 10 | meters                 |
|-----------------------------------|------------------------|
| Ground Roughness: open country    | Cloud Cover: 0 tenths  |
| Air Temperature: 35° F            | Stability Class: D     |
| No Inversion Height               | Relative Humidity: 22% |

3. Use "Tank" for your Source option. (Consult <u>http://worldtraderef.com/WTR\_site/Rail\_Cars/Guide\_to\_Rail\_Cars.asp</u> to determine the estimated Tank dimensions)

### Tanker Back to Top

# Dimensions

| Length over couplers | 59' 9"                              | 18.21 m |
|----------------------|-------------------------------------|---------|
| Length over strikers | 57' 1 <sup>1</sup> / <sub>2</sub> " | 17.41 m |
| Truck centers        | 46' 3 <sup>1</sup> / <sub>4</sub> " | 14.10 m |
| Height, extreme      | 15' 5"                              | 4.70 m  |
| Width, extreme       | 10' 7 <sup>1</sup> / <sub>2</sub> " | 3.24 m  |

# Weight/Capacity

| Light weight        | 65,700 lbs     | 29,801 kg      |
|---------------------|----------------|----------------|
| Gross rail load     | 263,000 lbs    | 119,295 kg     |
| Shell full capacity | 30,000 gallons | 113,562 liters |

# <u>Tank</u>

| Inside diameter        | 9'11 <sup>1</sup> / <sub>8</sub> "     | 3.03 m  |
|------------------------|----------------------------------------|---------|
| Length over tank heads | 53' 10 <sup>13</sup> / <sub>16</sub> " | 16.43 m |
| Tank slope             | $^{1}/_{4}$ " per foot                 | -       |
| Plate thickness        | <sup>7</sup> / <sub>16</sub> "         | 1.11 cm |
| Manway nozzle          | 20"                                    | 50.8 cm |

NOTE: from the above railcar guide, I input a 30,000 gallon tank capacity and 54 feet tank length to ALOHA; ALOHA then determined a Tank Diameter of 9.72 feet.

#### SITE DATA:

Location: OKLAHOMA CITY, OKLAHOMA Building Air Exchanges Per Hour: 1.26 (unsheltered single storied) Time: December 1, 2010 0630 hours CST (user specified)

#### CHEMICAL DATA:

Chemical Name: ACETONEMolecular Weight: 58.08 g/molTEEL-1: 200 ppmTEEL-2: 3200 ppmTEEL-3: 5700 ppmLEL: 26000 ppmUEL: 128000 ppmAmbient Boiling Point: 130.7° FVapor Pressure at Ambient Temperature: 0.10 atmAmbient Saturation Concentration: 105,579 ppm or 10.6%

#### ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)

Wind: 16 miles/hour from sw at 10 metersGround Roughness: open countryCloud Cover: 0 tenthsAir Temperature: 35° FStability Class: DNo Inversion HeightRelative Humidity: 22%

#### SOURCE STRENGTH:

BLEVE of flammable liquid in horizontal cylindrical tank Tank Diameter: 9.72 feet Tank Length: 54 feet Tank Volume: 30000 gallons Tank contains liquid Internal Storage Temperature: 35° F Chemical Mass in Tank: 172,918 pounds Tank is 85% full Percentage of Tank Mass in Fireball: 100% Fireball Diameter: 272 yards Burn Duration: 15 seconds

# Estimating BLEVE, VCE, and Toxic Threat Zone data: ACETONE

1. Enter the Tank dimensions as given above

| Tank Size and Orientation         |                    |                     |
|-----------------------------------|--------------------|---------------------|
| Select tank type and orientation: | Vertical cylinder  | Sphere              |
| Horizontal cylinder               |                    |                     |
|                                   | $\bigcup$          |                     |
| ۰                                 | 0                  | 0                   |
|                                   | Enter two of three | values:             |
| ←length→ ↑                        | diameter 9.72      | G feet C meters     |
|                                   | length 54          |                     |
|                                   | volume 30000       | ⊙ gallons ⊂ cu feet |
| ОК                                | Cancel             | Help                |

2. Enter Chemical State and Temperature as "Liquid" and "Ambient"

| Chemical State and Temperature         |       |
|----------------------------------------|-------|
| Enter state of the chemical:           | Неір  |
| • Tank contains liquid                 |       |
| O Tank contains gas only               |       |
| O Unknown                              |       |
|                                        |       |
| Enter the temperature within the tank: | Help  |
| Chemical stored at ambient temperature |       |
| O Chemical stored at 35 degrees        | ⊙F CC |
|                                        |       |
|                                        | -     |
| OK Cancel                              |       |
|                                        |       |

3. Assume the railcar is essentially completely full at the time of the derailment and enter "85" % full by volume

| Liquid Mass or Volume      |                                                                |                                                                                       |
|----------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Enter the mass in the tank | OR volume of the liquid                                        |                                                                                       |
| The mass in the tank is:   | © pounds<br>172,918<br>○ tons(2,000 lbs)<br>○ kilograms        |                                                                                       |
|                            | 0R                                                             |                                                                                       |
| Enter liquid level OR volu | me<br>The liquid<br>volume is: 25,497<br>85.0 % full by volume | <ul> <li>gallons</li> <li>cubic feet</li> <li>liters</li> <li>cubic meters</li> </ul> |
| ОК                         | ▼ Cancel                                                       | Help                                                                                  |

4. Select "BLEVE" as the Type of Tank Failure

| Scenario:<br>Tank containing an unpressurized flammable liquid.                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of Tank Failure:                                                                                                                                                                                                                                   |
| $\odot$ Leaking tank, chemical is not burning and forms an evaporating puddle                                                                                                                                                                           |
| C Leaking tank, chemical is burning and forms a pool fire                                                                                                                                                                                               |
| BLEVE, tank explodes and chemical burns in a fireball                                                                                                                                                                                                   |
| Potential hazards from BLEVE:<br>- Thermal radiation from fireball and pool fire<br>- Hazardous fragments and blast force from explosion<br>(cannot be modeled by ALOHA)<br>- Downwind toxic effects of fire byproducts<br>(cannot be modeled by ALOHA) |
| <u>Q</u> K <u>C</u> ancel <u>H</u> elp                                                                                                                                                                                                                  |

5. Accept the ALOHA default values for the BLEVE

| BLEVE Percent Mass in Fireball                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BLEVE / Fireball Scenario:<br>The higher the internal tank pressure (or tank temperature) at the time of tank failure,<br>the larger the fireball. Any liquid not consumed by the fireball will form a pool fire. |
| Enter one of the following:                                                                                                                                                                                       |
| Percentage of mass in the fireball: (0 % - 100%)           100         %                                                                                                                                          |
| • Pressure inside the tank at time of failure:                                                                                                                                                                    |
| ©psia CmmHg<br>Catm CPa                                                                                                                                                                                           |
| • Temperature inside the tank at time of failure:                                                                                                                                                                 |
| 246.1 degrees C C                                                                                                                                                                                                 |
| OK Cancel Help                                                                                                                                                                                                    |

# **BLEVE AREA Threat Zone**

Select the Display / Threat Zone menu



#### SOURCE STRENGTH:

BLEVE of flammable liquid in horizontal cylindrical tank Tank Diameter: 9.72 feet Tank Length: 54 feet Tank Volume: 30000 gallons Tank contains liquid Internal Storage Temperature: 35° F Chemical Mass in Tank: 172,918 pounds Tank is 85% full Percentage of Tank Mass in Fireball: 100% Fireball Diameter: 272 yards Burn Duration: 15 seconds

#### THREAT ZONE:

Threat Modeled: Thermal radiation from fireball Red : 520 yards --- (10.0 kW/(sq m) = potentially lethal within 60 sec) Orange: 741 yards --- (5.0 kW/(sq m) = 2nd degree burns within 60 sec) Yellow: 1164 yards --- (2.0 kW/(sq m) = pain within 60 sec)

# **VAPOR CLOUD EXPLOSION AREA** Using a 3 inch short pipe or valve located at the bottom of the tank

- 1. Use the same Tank Dimensions, Chemical State, and Liquid Volume as above
- 2. Select "Leaking tank, chemical is not burning and forms an evaporating puddle" as the Type of Tank Failure

| Je | Scenario:<br>Tank containing an unpressurized flammable liquid.                       |
|----|---------------------------------------------------------------------------------------|
| ур | be of Tank Failure:                                                                   |
|    | $f\circ$ Leaking tank, chemical is not burning and forms an evaporating puddle        |
|    | C Leaking tank, chemical is burning and forms a pool fire                             |
|    | $^{\circ}$ BLEVE, tank explodes and chemical burns in a fireball                      |
|    | Potential hazards from flammable chemical which is not burning as it leaks from tank: |
|    | - Downwind toxic effects                                                              |
|    | - Vapor cloud flash fire                                                              |
|    | - Overpressure (blast force) from vapor cloud explosion                               |
|    | OK Cancel Help                                                                        |

3. Enter "Circular opening", "3" inches; and "Short pipe or valve"

| Area and Type of Leak                                                       |                                |
|-----------------------------------------------------------------------------|--------------------------------|
| Select the shape that best represents the opening through which the polluta | the shape of<br>Int is exiting |
|                                                                             | -length>                       |
| • Circular opening • F                                                      | Rectangular opening            |
|                                                                             | • inches                       |
| 3                                                                           | O feet                         |
| Opening diameter: 1º                                                        | C centimeters                  |
|                                                                             | O meters                       |
| Is leak through a hole or short pipe/v                                      | alve?                          |
| O Hole 💿 SI                                                                 | nort pipe/valve                |
| OK Cancel                                                                   | Help                           |

4. Enter "0" for the bottom of the leak is value

| Height of the Tank Opening |                                                                                                                                                                                        |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| liq.level                  | <ul> <li>The bottom of the leak is:</li> <li>O in O ft O cm O m<br/>above the bottom of the tank</li> <li>OR</li> <li>OR</li> <li>O % of the way to the top of<br/>the tank</li> </ul> |
| ОК                         | Cancel Help                                                                                                                                                                            |

5. Select "Default soil"; "Use air temperature"; and "Unknown" for the Puddle Parameters

| Puddle Parameters                              |
|------------------------------------------------|
| Select ground type Help                        |
| Default soil (select this if unknown)          |
| O Concrete                                     |
| O Sandy dry soil                               |
| O Moist sandy soil                             |
| O Water                                        |
| Input ground temperature Help                  |
| • Use air temperature (select this if unknown) |
| ○ Ground temperature is 🔒 deg. ● F ○ C         |
| Input maximum puddle diameter or area Help     |
| ⊙ Unknown                                      |
| O Maximum diameter                             |
| O Maximum area IS O meters                     |
| OK Cancel                                      |

6. Select "Blast Area of Vapor Cloud" as the Hazard to Analyze

| Hazard To Analyze                                                               |
|---------------------------------------------------------------------------------|
| Scenario:<br>Flammable chemical escaping from tank.<br>Chemical is NOT on fire. |
| Choose Hazard to Analyze:                                                       |
| C Toxic Area of Vapor Cloud                                                     |
| C Flammable Area of Vapor Cloud                                                 |
| Blast Area of Vapor Cloud Explosion                                             |
| OK Cancel Help                                                                  |

7. Select "unknown"; "ignited by spark or flame"; and "uncongested" for the Vapor Cloud Explosion Parameters

| Vapor Cloud Explosion Parameters                                    |                      |
|---------------------------------------------------------------------|----------------------|
| Time of vapor cloud ignition:                                       | Help                 |
| • unknown (show composite threat zone from all poss                 | ible ignition times) |
| 🔿 known, ignition time is :                                         |                      |
|                                                                     |                      |
| Type of vapor cloud ignition:                                       | Негр                 |
| Ignited by spark or flame                                           |                      |
| C ignited by detonation                                             |                      |
| Level of congestion :<br>(in the flammable part of the vapor cloud) | Help                 |
| 🔿 congested, difficult to walk through (e.g. pipe rack, de          | nse forestì          |
| • unconcested, easy to walk through (e.g. residential n             | eiahborhood)         |
| J                                                                   |                      |
| OK Cancel                                                           |                      |

8. Accept the ALOHA defaults for the Level of Concern values

| Overpressure Level of Concern           |
|-----------------------------------------|
| Select Overpressure Level of Concern:   |
| Red Threat Zone                         |
| LOC: 8.0 psi = destruction of buildings |
|                                         |
|                                         |
| Orange Threat Zone                      |
| LOC: 3.5 psi = serious injury likely    |
|                                         |
|                                         |
| Yellow Threat Zone                      |
| LOC: 1.0 psi = shatters glass           |
|                                         |
|                                         |
|                                         |
| Show confidence lines:                  |
| 💿 only for longest threat zone          |
| O for each threat zone                  |
| OK Cancel Help                          |

9. Select the Display / Threat Zone menu



*Note:* ALOHA predicts there will not be any explosion from an ACETONE release with these conditions because the LEL for Acetone is never exceeded.

#### SOURCE STRENGTH:

Leak from short pipe or valve in horizontal cylindrical tank Flammable chemical escaping from tank (not burning) Tank Diameter: 9.72 feet Tank Length: 54 feet Tank Volume: 30000 gallons Tank contains liquid Internal Temperature: 35° F Chemical Mass in Tank: 172,918 pounds Tank is 85% full **Circular Opening Diameter: 3 inches** Opening is 0 feet from tank bottom Ground Type: Default soil Ground Temperature: equal to ambient Max Puddle Diameter: Unknown Release Duration: ALOHA limited the duration to 1 hour Max Average Sustained Release Rate: 327 pounds/min (averaged over a minute or more) Total Amount Released: 13,653 pounds Note: The chemical escaped as a liquid and formed an evaporating puddle. The puddle spread to a diameter of 50 yards.

#### THREAT ZONE:

Threat Modeled: Overpressure (blast force) from vapor cloud explosion Type of Ignition: ignited by spark or flame Level of Congestion: uncongested Model Run: Gaussian No explosion: no part of the cloud is above the LEL at any time

# **TOXIC THREAT ZONE AREA** Using a 3 inch short pipe or valve located at the bottom of the tank

- 1. Select the Display / Threat Zone menu
- 2. Select "Toxic Area of Vapor Cloud" as the Hazard to Analyze

| Uppend To Applying                                                              |  |
|---------------------------------------------------------------------------------|--|
| nazaro To Analyze                                                               |  |
| Scenario:<br>Flammable chemical escaping from tank.<br>Chemical is NOT on fire. |  |
| Choose Hazard to Analyze:                                                       |  |
| © Flammable Area of Vapor Cloud                                                 |  |
| C Blast Area of Vapor Cloud Explosion                                           |  |
| OK Cancel Help                                                                  |  |
|                                                                                 |  |

### 3. Accept the ALOHA default values for the Level of Concern

| Toxic Level of Concern         |
|--------------------------------|
| Select Toxic Level of Concern: |
| Red Threat Zone                |
| LOC: TEEL-3: 5700 ppm          |
|                                |
| 0                              |
| Urange Inreat Zone             |
| LOC: TEEL-2: 3200 ppm 💌        |
|                                |
| Yellow Threat Zone             |
| LOC: TEEL-1: 200 ppm 💌         |
|                                |
| Show confidence lines:         |
| • only for longest threat zone |
| O for each threat zone         |
|                                |
| OK Cancel Help                 |
|                                |



#### SOURCE STRENGTH:

Leak from short pipe or valve in horizontal cylindrical tank Flammable chemical escaping from tank (not burning) Tank Diameter: 9.72 feet Tank Length: 54 feet Tank Volume: 30000 gallons Internal Temperature: 35° F Tank contains liquid Chemical Mass in Tank: 172,918 pounds Tank is 85% full Circular Opening Diameter: 3 inches Opening is 0 feet from tank bottom Ground Type: Default soil Ground Temperature: equal to ambient Max Puddle Diameter: Unknown Release Duration: ALOHA limited the duration to 1 hour Max Average Sustained Release Rate: 327 pounds/min (averaged over a minute or more) Total Amount Released: 13,653 pounds Note: The chemical escaped as a liquid and formed an evaporating puddle. The puddle spread to a diameter of 50 yards. THREAT ZONE: Model Run: Gaussian Red : 24 yards --- (5700 ppm = TEEL-3) Note: Threat zone was not drawn because effects of near-field patchiness make dispersion predictions less reliable for short distances. Orange: 29 yards --- (3200 ppm = TEEL-2)

Note: Threat zone was not drawn because effects of near-field patchiness make dispersion predictions less reliable for short distances.

Yellow: 232 yards --- (200 ppm = TEEL-1)

## **REPEAT THE ABOVE STEPS USING CHEMICAL "CYCLOHEXYLAMINE"**



#### BLEVE THREAT ZONE: CYCLOHEXYLAMINE

#### SITE DATA:

Location: OKLAHOMA CITY, OKLAHOMA

Building Air Exchanges Per Hour: 1.26 (unsheltered single storied) Time: December 1, 2010 0630 hours CST (user specified)

#### CHEMICAL DATA:

Chemical Name: CYCLOHEXYLAMINE Molecular Weight: 99.17 g/mol AEGL-1(60 min): 1.8 ppm AEGL-2(60 min): 8.6 ppm AEGL-3(60 min): 30 ppm LEL: 6600 ppm UEL: 93000 ppm Ambient Boiling Point: 270.7° F Vapor Pressure at Ambient Temperature: 0.0030 atm Ambient Saturation Concentration: 3,130 ppm or 0.31%

ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)Wind: 16 miles/hour from sw at 10 metersGround Roughness: open countryCloud Cover: 0 tenthsAir Temperature: 35° FStability Class: DNo Inversion HeightRelative Humidity: 22%

#### SOURCE STRENGTH:

BLEVE of flammable liquid in horizontal cylindrical tank Tank Diameter: 9.72 feet Tank Length: 54 feet Tank Volume: 30000 gallons Tank contains liquid Internal Storage Temperature: 35° F Chemical Mass in Tank: 187,668 pounds Tank is 85% full Percentage of Tank Mass in Fireball: 100% Fireball Diameter: 279 yards Burn Duration: 15 seconds

THREAT ZONE:

Threat Modeled: Thermal radiation from fireball Red : 620 yards --- (10.0 kW/(sq m) = potentially lethal within 60 sec) Orange: 878 yards --- (5.0 kW/(sq m) = 2nd degree burns within 60 sec) Yellow: 1375 yards --- (2.0 kW/(sq m) = pain within 60 sec)

### VAPOR CLOUD EXPLOSION THREAT ZONE: CYCLOHEXYLAMINE



# TOXIC AREA THREAT ZONE: CYCLOHEXYLAMINE



#### SITE DATA:

Location: OKLAHOMA CITY, OKLAHOMA

Building Air Exchanges Per Hour: 1.26 (unsheltered single storied) Time: December 1, 2010 0630 hours CST (user specified)

#### CHEMICAL DATA:

Chemical Name: CYCLOHEXYLAMINE Molecular Weight: 99.17 g/mol AEGL-1(60 min): 1.8 ppm AEGL-2(60 min): 8.6 ppm AEGL-3(60 min): 30 ppm LEL: 6600 ppm UEL: 93000 ppm Ambient Boiling Point: 270.7° F Vapor Pressure at Ambient Temperature: 0.0030 atm Ambient Saturation Concentration: 3,130 ppm or 0.31%

### ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)

Wind: 16 miles/hour from sw at 10 metersGround Roughness: open countryCloud Cover: 0 tenthsAir Temperature: 35° FStability Class: DNo Inversion HeightRelative Humidity: 22%

#### SOURCE STRENGTH:

Leak from short pipe or valve in horizontal cylindrical tank Flammable chemical escaping from tank (not burning) Tank Diameter: 9.72 feet Tank Length: 54 feet Tank Volume: 30000 gallons Tank contains liquid Internal Temperature: 35° F Chemical Mass in Tank: 187,668 pounds Tank is 85% full Circular Opening Diameter: 3 inches Opening is 0 feet from tank bottom Ground Type: Default soil Ground Temperature: equal to ambient Max Puddle Diameter: Unknown Release Duration: ALOHA limited the duration to 1 hour Max Average Sustained Release Rate: 37.3 pounds/min (averaged over a minute or more) Total Amount Released: 1,285 pounds Note: The chemical escaped as a liquid and formed an evaporating puddle. The puddle spread to a diameter of 66 yards.

THREAT ZONE: Model Run: Gaussian Red : 84 yards --- (30 ppm = AEGL-3(60 min)) Orange: 288 yards --- (8.6 ppm = AEGL-2(60 min)) Yellow: 847 yards --- (1.8 ppm = AEGL-1(60 min))

### <u>REPEAT THE ABOVE STEPS USING CHEMICAL "HYDROCHLORIC ACID,</u> <u>SOLUTION"</u>

- 1. Select the Setup / Chemical menu
- 2. Select "Solutions"

| Chemical Information                                                          |                |
|-------------------------------------------------------------------------------|----------------|
| View: C Pure Chemicals<br>© Solutions                                         | Colored        |
|                                                                               | <u>s</u> elect |
| HYDROCHLORIC ACID<br>HYDROFLUORIC ACID<br>NITRIC ACID<br>OLEUM                | <u>C</u> ancel |
| Solution Strength: % (by Weight)                                              |                |
| The percentage of ammonia in solution.<br>Allowable range is 0 to 30 percent. |                |
|                                                                               | <u>H</u> elp   |

3. Select "Hydrochloric Acid" and enter "42" % (by Weight)

| Chemical Information                           |                |
|------------------------------------------------|----------------|
| View: O Pure Chemicals                         |                |
| Solutions                                      | Select         |
|                                                |                |
|                                                |                |
|                                                | <u>U</u> ancel |
| NITRIC ACID                                    |                |
|                                                |                |
|                                                |                |
|                                                |                |
| Solution Strength: 42 % (by Weight)            |                |
|                                                |                |
| The perceptors of hydrogen chloride in         |                |
| colution. Allowable range is 20 to 42 percent  |                |
| Solution. Allowable lange is 20 to 42 percent. |                |
|                                                | Heln           |
|                                                | <u> </u>       |
|                                                |                |
|                                                |                |

- 4. Select the Setup / Source / Puddle menu
- 5. Enter diameter = 170 yards and Volume = 25,500 gallons (which is 85% of the 30,000 gallon tank capacity)

| Puddle Input                          |                                         |
|---------------------------------------|-----------------------------------------|
| O area<br>Puddle ⊙ diameter is: 170   | ⊂ feet<br>● yards<br>⊂ meters           |
| Select one and enter appropriate data | I                                       |
| • Volume of puddle                    |                                         |
| O Average depth of puddle             |                                         |
| O Mass of puddle                      |                                         |
| Volume is: 25500 C cub                | lons C liters<br>ic feet C cubic meters |
| OK Cancel                             | Help                                    |

6. Select "Default"; "Air Temp"; and "Ground Temp"

| Ground Type, Ground and Puddle Temperature                                                                                                                        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Select ground type Help                                                                                                                                           |  |
| • Default soil (select this if unknown)                                                                                                                           |  |
| O Concrete                                                                                                                                                        |  |
| Sandy dry soil                                                                                                                                                    |  |
| O Moist sandy soil                                                                                                                                                |  |
| C Water (ALOHA does not model solutions on water)                                                                                                                 |  |
| Input ground temperature Help<br>© Use air temperature (select this if unknown)<br>© Ground temperature is DE                                                     |  |
| Input initial puddle temperature Help<br>• Use ground temperature (select this if unknown)<br>• Use air temperature<br>• Initial puddle temperature is 35 • F • C |  |
| OK Cancel                                                                                                                                                         |  |

7. Select the Display / Threat Zone menu



### 8. Accept the ALOHA default values for the Level of Concern

#### SITE DATA:

Location: OKLAHOMA CITY, OKLAHOMA Building Air Exchanges Per Hour: 1.26 (unsheltered single storied) Time: December 1, 2010 0630 hours CST (user specified)

#### CHEMICAL DATA:

Chemical Name: HYDROCHLORIC ACID Solution Strength: 42% (by weight) Ambient Boiling Point: 68.9° F Partial Pressure at Ambient Temperature: 0.36 atm Ambient Saturation Concentration: 381,055 ppm or 38.1% Hazardous Component: HYDROGEN CHLORIDE Molecular Weight: 36.46 g/mol AEGL-1(60 min): 1.8 ppm AEGL-2(60 min): 22 ppm AEGL-3(60 min): 100 ppm IDLH: 50 ppm

ATMOSPHERIC DATA: (MANUAL INPUT OF DATA)

Wind: 16 miles/hour from sw at 10 metersGround Roughness: open countryCloud Cover: 0 tenthsAir Temperature: 35° FStability Class: DNo Inversion HeightRelative Humidity: 22%

SOURCE STRENGTH: Evaporating Puddle Puddle Diameter: 170 yards Ground Type: Default soil Initial Puddle Temperature: Ground Temperature: 35° F Initial Puddle Temperature: Ground temperature Release Duration: ALOHA limited the duration to 1 hour Max Average Sustained Release Rate: 8,090 pounds/min (averaged over a minute or more) Total Amount Hazardous Component Released: 42,025 pounds

THREAT ZONE: Model Run: Gaussian Red : 1.5 miles --- (100 ppm = AEGL-3(60 min)) Orange: 3.3 miles --- (22 ppm = AEGL-2(60 min)) Yellow: greater than 6 miles --- (1.8 ppm = AEGL-1(60 min))

Notice ALOHA does not offer either "BLEVE" or "Vapor Cloud Explosion" as hazard to Analyze choices for the Hydrochloric Acid. However, the Toxic Threat Zone Area for the Hydrochloric is very large when compared to the Threat Zones for Cyclohexylamine and Acetone.

Notice that for all three chemicals, ALOHA predicts the length of time for the liquid to completely volatize is greater than one hour. You can find this by reviewing the SOURCE STRENGTH part of the ALOHA Text Summary.

#### ACETONE:

SOURCE STRENGTH: Leak from short pipe or valve in horizontal cylindrical tank Flammable chemical escaping from tank (not burning) Tank Diameter: 9.72 feet Tank Length: 54 feet Tank Volume: 30000 gallons Tank contains liquid Internal Temperature: 35° F Chemical Mass in Tank: 172,918 pounds Tank is 85% full Circular Opening Diameter: 3 inches Opening is 0 feet from tank bottom Ground Type: Default soil Ground Temperature: equal to ambient Max Puddle Diameter: Unknown Release Duration: ALOHA limited the duration to 1 hour Max Average Sustained Release Rate: 327 pounds/min (averaged over a minute or more) Total Amount Released: 13,653 pounds Note: The chemical escaped as a liquid and formed an evaporating puddle. The puddle spread to a diameter of 50 yards.

#### CYCLOHEXYLAMINE:

SOURCE STRENGTH: Leak from short pipe or valve in horizontal cylindrical tank Flammable chemical escaping from tank (not burning) Tank Diameter: 9.72 feet Tank Length: 54 feet Tank Volume: 30000 gallons Tank contains liquid Internal Temperature: 35° F Chemical Mass in Tank: 187,668 pounds Tank is 85% full Circular Opening Diameter: 3 inches Opening is 0 feet from tank bottom Ground Type: Default soil Ground Temperature: equal to ambient Max Puddle Diameter: Unknown Release Duration: ALOHA limited the duration to 1 hour Max Average Sustained Release Rate: 37.3 pounds/min (averaged over a minute or more) Total Amount Released: 1,285 pounds Note: The chemical escaped as a liquid and formed an evaporating puddle. The puddle spread to a diameter of 66 yards.

#### HYDROCHLORIC ACID:

SOURCE STRENGTH: Evaporating Puddle Puddle Diameter: 170 yards Ground Type: Default soil Initial Puddle Temperature: Ground Temperature: 35° F Initial Puddle Temperature: Ground temperature Release Duration: ALOHA <u>limited the duration to 1 hour</u> Max Average Sustained Release Rate: 8,090 pounds/min (averaged over a minute or more) Total Amount Hazardous Component Released: 42,025 pounds

Notice the amount of Hydrochloric Acid release during the first hour compared to the Cyclohexylamine and the Acetone

ACETONE:Total Amount Released: 13,653 poundsCYCLOHEXYLAMNE:Total Amount Released: 1,285 poundsHYDROCHLORIC ACID:Total Amount Hazardous Component Released: 42,025 pounds

Notice ALOHA does not allow us to use the "tank" source model for any of the chemical "solutions". Thus, the amount of time needed for the Hydrochloric to exit the railcar is not considered by ALOHA. ALOHA modeled the Hydrochloric as if it were as instantaneously formed "puddle" that is 170 yards in diameter.

To effectively compare the volatization rate of the Acetone and the Cyclohexylamine to the Hydrochloric Acid, users would need to use the "puddle" model for all three materials. However, using the puddle model ignores the time necessary for the material to vacate the tanker via a 3" valve leak. Thus, the ALOHA results for the Acetone and the Cyclohexylamine will likely be more accurate using the Tank course model.

In any case, ALOHA provides additional information that may be critical to a safe and effective response to this derailment event. Incident Command should be appraised of the potential BLEVE area and the Toxic Threat Zone areas. The ERG-suggested Isolation Zone of 150 feet may not offer sufficient protective distances in this case.

Additionally, one should consider modeling all the above release scenarios using the forecasted weather. The fact that the temperature is going to be 55 degrees rather than 35 degrees may significantly alter the ALOHA Threat Zone predictions. And the wind direction and speed will be changing, too. Remember, no chemical release is occurring at 6:30 am, and we are using ALOHA to evaluate what might happen. As such, we should consider future weather conditions in our ALOHA analyses.

### **ANSWERS**:

| Hydrochloric Acid, Solution       |
|-----------------------------------|
| Sodium Chlorate, Aqueous Solution |
| Acetone                           |
| Cyclohexylamine                   |
|                                   |

# **CAMEO Chemicals**

- 1. Use CAMEO Chemicals to gather information for the various chemicals. (CAMEO Companion pages 31-34)
  - a. Are these materials liquid, solid, or gas? <u>ALL ARE LIQUIDS</u>
  - b. Is it likely that these materials are carried in Liquid Tankers or Pressurized Tankers? <u>ALL WOULD LIKELY SHIP IN LIQUID TANKERS</u>
  - c. What are the primary hazards associated with these materials? <u>ACETONE: FLAMMABLE</u> <u>HYDROCHLORIC ACID: REACTIVE AND TOXIC</u> <u>CYCLOHEXYLAMINE: TOXIC AND FLAMMABLE</u> <u>SODIUM CHLORATE: OXIDIZER</u>
- 2. Use the CAMEO Chemicals "Predict Reactivity" module to evaluate the potential reactive hazards for this incident. (CAMEO Companion pages 34-35)

|                                      | CYCLOHEXYLAMINE                                                                      |                                                                                                                         |                                                                                     |
|--------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| HYDROCHLORIC ACID,<br>SOLUTION       | Corrosive<br>Heat generation<br>Intense reaction<br>Toxic gas                        | HYDROCHLORIC ACID,<br>SOLUTION                                                                                          |                                                                                     |
| SODIUM CHLORATE,<br>AQUEOUS SOLUTION | Corrosive<br>Explosive<br>Flammable<br>Flammable gas<br>Heat generation<br>Toxic gas | Combustion-<br>enhancing gas<br>Corrosive<br>Explosive<br>Flammable<br>Heat generation<br>Intense reaction<br>Toxic gas | SODIUM CHLORATE, AQUEOUS<br>SOLUTION                                                |
| ACETONE                              | Flammable gas                                                                        | Heat generation                                                                                                         | Explosive<br>Flammable<br>Heat generation<br>Intense reaction<br>Toxic<br>Toxic gas |

 Determine the Initial Isolation Zone and Evacuation distances appropriate for this scenario. (CAMEO Companion pages 31-34) <u>ERG SUGGESTS 150</u> <u>IMMEDIATE ISOLATION ZONE FOR ALL FOUR OF THESE</u> <u>SUBSTANCES. EVACUATION DISTANCES VARYFROM 100 FEET TO</u> <u>1000 FEET (NON-FIRE); AND ½ MILE (FIRE)</u>